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Identification and Estimation of Bidders’ Risk Aversion in First-Price Auctions

I. Perrigne and Q. Vuong*

Risk aversion is a fundamental concept in economics used to explain agents’ behavior

under uncertainty. Risk aversion in auctions has been justified through the many uncer-

tainties faced by bidders in auctions and through the large value of bids relative to bidders’

assets. In first-price auctions, risk aversion renders bidding more aggresssive, while bidding

in ascending auctions is not affected leading to the dominance of the sealed-bid mechanism

over the ascending one. Risk aversion has been extensively tested on experimental data as

overbidding relative to the Nash Equilibrium is frequently observed. In view of recent de-

velopments in the structural estimation of auction models, Patrick Bajari and Ali Hortacsu

(2005) show that the risk aversion model provides the best fit to experimental data over

several competing models.

Given larger financial stakes, it is likely that bidders’ risk aversion is present in field

auction data as well. The theoretical auction literature does not provide simple implications

that can be tested on bidding data. Consequently, detecting risk aversion in auctions is

difficult if not impossible. More generally with microeconomic data, risk aversion can be

detected only when diversification occurs such as in portfolio management and in auctions

with diversification across species as in Susan Athey and Jonathan Levin (2001). This calls

for the necessity of a structural modeling to evaluate bidders’ risk aversion. In the structural

approach, observed bids are assumed to be the outcome of the Bayesian Nash equilibrium of

a particular model. Though a tight structure is imposed to explain observed bids, assessing

risk aversion is a challenging problem. As a matter of fact, the model with risk averse bidders

is not identified in general from observed bids. Moreover, in view of bids only we cannot

distinguish several well known specifications of risk aversion such relative risk aversion (RRA)

or absolute risk aversion (ARA) though they lead to different economic implications.

Thus, recovering risk aversion requires to impose some restrictions. We discuss three

possible restrictions: (i) partial parameterization of the auction model, (ii) exogeneity of
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the number of bidders, and (iii) additional bidding data. In the first case, parameterizing

the utility function is not sufficient as an increase in the risk aversion parameter such as

constant RRA (CRRA) can be compensated by a shrinkage of the quantiles of the valuation

distribution leading to the same bid observations. Similarly, parameterizing the underlying

valuation distribution does not allow to recover the utility function. A combination of

both is necessary to identify the model, i.e. parameterization of the utility function and

parameterization of a conditional quantile of the underlying distribution. In the second case,

assuming exogeneity of the number of bidders allows to recover the bidders’ utility function

without any further assumption. This exclusion restriction is in the spirit of instrumental

variables. In the third case, the availability of ascending auction data allows to recover the

underlying distribution, which can be used in first-price auction data to recover the bidders’

utility function. This paper reviews these results while relying on three articles, namely

Sandra Campo, Emmanuel Guerre, Isabelle Perrigne and Quang Vuong (2006), Guerre,

Perrigne and Vuong (2006) and Jingfeng Lu and Perrigne (2006).

A first section introduces the auction model and discusses the nonindentification of risk

aversion. A second section presents the identification of risk aversion under parametric

restrictions and briefly discusses the estimation of risk aversion. A third section is devoted

to the identification of risk aversion under exclusion restrictions, while a fourth section

considers the identification of risk aversion using additional data.

I. Nonidentification of Risk Aversion

As a benchmark, we consider the first-price sealed-bid auction with independent private

values distributed as F (·) on [v, v] and a I ≥ 2 symmetric bidders. Bidders are potentially

risk averse with a utility function U(·) satisfying U(0) = 0, U ′(·) > 0 and U ′′(·) ≤ 0. Bidder

i maximizes his expected utility EΠi = U(vi − bi)Pr(bi ≥ bj, j 6= i) with respect to his bid

bi given his private value vi. Denoting by s(·) the Bayesian Nash equilibrium strategy, the

solution of the game is given by the differential equation s′(vi) = (I−1)[f(vi)/F (vi)]λ(vi−bi),

where λ(·) = U(·)/U ′(·) with the boundary condition s(v) = v.
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The observations consist of the pair (I, G), where G(·) is the distribution of equilibrium

bids. Following Guerre, Perrigne and Vuong (2000), the previous differential equation can

then be rewritten as

vi = bi + λ−1

(
1

I − 1

G(bi)

g(bi)

)
, (1)

since λ(·) is strictly increasing. This equation expresses each bidder’s private value as a

function of his corresponding bid, the bid distribution and density, the number of bidders

and the utility function. Note that (1) provides an expression of the inverse of the bidding

strategy s(·). We now address the problem of identification of the model structure (U, F )

from observables (I, G), namely whether the structure can be recovered uniquely from the

observations. Guerre et al. (2006) provide some smoothness conditions on U(·) and F (·),

which in turn imply some smoothness conditions on s(·) and G(·). See Definitions 1–3 and

Theorem 1 in that paper.

Proposition 1: The model with risk aversion is not identified.

The proof of such a result is obtained by constructing a structure [Ũ , F̃ ] such that Ũ(·) =

[U(·/δ)/U(1/δ)]δ, with δ ∈ (0, 1) leading to the same bid distribution G(·) as [U, F ]. It then

remains to check that [Ũ , F̃ ] satisfies the smoothness conditions and leads to an increasing

inverse equilibrium strategy. As such, [Ũ , F̃ ] and [U, F ] are observationally equivalent. Since

the risk neutral model with U(·) being the identity function is identified, this suggests that

nonidentification arises from the unknown U(·). As a matter of fact, any bid distribution G(·)

satisfying some smoothness conditions can be rationalized by a CRRA or a constant ARA

(CARA) structure. By allowing risk aversion, one can explain almost any bid distribution.

This problem arises because of the weakness of the restrictions imposed by the model on

observables. In particular, in view of observations we cannot discriminate a model with

arbitrary risk aversion from a CRRA or a CARA model. Since a risk neutral model is a special

risk averse model, any risk neutral model may lead a priori to the same bid observations

than some CRRA or CARA model. It is worthnoting that these results still hold when
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considering a binding reserve price, a random reserve price, affiliated private values and

asymmetric bidders.

II. Identification of Risk Aversion Under Parametric Restrictions

A first identifying strategy is to introduce some partial parametric restrictions as a fully

parametric model is almost always identified. Though the source of the problem comes from

the bidders’ utility function, a first natural choice would be to parameterize the private value

distribution F (·) as F (·; γ). A second natural choice would be to parameterize the utility

function U(·) as U(·; θ) though little is known on the nature of bidders’ risk aversion.

Proposition 2: The semiparametric model composed of structures [U(·), F (·; γ)] is not iden-

tified. The semiparametric model composed of structures [U(·, θ), F (·)] is not identified.

Hence, parameterizing either U(·) or F (·) is not sufficient to identify the model. Regarding

the first part of Proposition 2, it is straightforward to construct a counterexample with

a uniform distribution. On the other hand, the proof of the second part of Proposition

2 provides an interesting fact. By considering the CRRA model, one can construct an

observationally equivalent structure [Ũ , F̃ ] with a CRRA parameter c̃ larger than c in the

original structure [U, F ]. The increase in risk aversion is compensated by a shrinkage of

all the quantiles of the private value distribution. Thus, the support of F̃ (·) is [v, ṽ] with

ṽ < v. It is worhtnoting that this result extends to a binding reserve price, a random reserve

price, affiliated private values and asymmetry in private values in which bidders draw their

private values from different distributions F1, . . . , FI . On the other hand, asymmetry in

preferences in which bidders have different utility functions U1, . . . , UI provides an interesting

identification result when U1, . . . , UI are parameterized. Let biα be the α-quantile of the bid

distribution Gi(·) for bidder i and vα the α-quantile of F (·). Because all the quantiles

(b1α, . . . , bIα) correspond to the same quantile vα, (1) evaluated at a quantile for an arbitrary

pair (i, j) gives biα + λ−1
i (1/Hi(biα)) = bjα + λ−1

j (1/Hj(biα)), where λi(·) = Ui(·)/U ′
i(·) and

Hi(·) =
∑

j 6=i gj(·)/Gj(·). This leads to some compatibility conditions that can be used to

achieve identification of the asymmetric auction model.
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Given these nonidentification results, more parametric restrictions need to be made to

achieve identification. On one hand, parameterizing F (·) leaves little choice as additional

parameterization of U(·) would lead to a fully parametric model. On the other hand, pa-

rameterizing U(·) leaves some flexibility as F (·) can be partially parameterized through

one quantile. The preceding phenomenon of compensation between risk aversion and the

quantiles of F (·) suggests that this parameterization will pin down that quantile thereby

identifying the model. This idea is exploited further by considering heterogeneity across

auctions embodied in some observed characteristics Z or in the number of bidders I. This

leads to the structure [U(·; θ), F (·|Z, I)] as U(·) is parameterized but independent of (Z, I).

By construction, the bid distribution becomes G(·|Z, I).

Let bα(Z, I) and vα(Z, I) be the α-quantiles of the distributions G(·|Z, I) and F (·|Z, I),

respectively with α ∈ [0, 1]. The idea is to impose a parametric conditional quantile restric-

tion, i.e. for some α ∈ (0, 1], vα(z, I) = vα(z, I; γ). For instance, vα(z, I; γ) can be chosen as

a constant or a polynomial to allow for more flexibility, where γ is the vector of coefficients

and α can be chosen as 0.5 giving the median. This condition is crucial in identifying the

model. Equation (1) becomes

g(bα(z, I)|z, I) =
1

I − 1

α

λ(vα(z, I; γ) − bα(z, I); θ)
. (2)

Identification requires to have enough variation in Z or I to identify the parameters θ and γ.

For instance, if θ and γ are both one-dimensional, two different values of Z or I are sufficient

to achieve identification.

Proposition 3: The semiparametric model composed of structures [U(·, θ), F (·)] is identi-

fied, when some quantile of F (·) satisfies the condition vα(z, I) = vα(z, I; γ).

This result extends to a binding reserve price, a random reserve price, affiliated private values

and asymmetry in private values. It remains to discuss the semiparametric estimation of

such a model. For simplicity, Guerre et al. (2006) consider a constant restriction at the

upper quantile. It is easy to rewrite (2) for α = 1 and v1(z, I) = γ. A preliminary step

consists in estimating nonparametrically the upper boundary of the bid distribution and the
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bid density at this upper boundary. With the latter replacing g(b1(z, I)|z, I) in (2), nonlinear

least squares are applied to estimate (θ, γ). From these estimates, (1) can be used to recover

the private values and estimate nonparametrically f(·|·, ·). Guerre et al. (2006) show that

the risk aversion parameter is estimated at the optimal rate, which is slower than
√

N and

independent of the dimension of Z thereby avoiding the curse of dimensionality.

III. Identification of Risk Aversion Under Exclusion Restrictions

There is no general agreement among economists on which concept of risk aversion is the most

appropriate to explain behavior under uncertainty. Moreover, little is known on the shape

of agents’ utility function. In view of these, it is interesting to exploit other restrictions

beyond parameterization to identify bidders’ utility function. Exclusion restrictions are

common in econometrics such as in the wage equation with instrumental variables to solve

for endogeneity of education. More recently, exclusion restrictions such as exogenous bidders’

participation in auctions have been used to test for common value. A similar idea can be

exploited to identify bidders’ untility function. Specifically, exogenous bidders’ participation,

which leads to a latent private value distribution independent of the number of bidders, is

considered. Variations of the bid distribution in the number of bidders while the private value

distribution remains the same identify the bidders’ utility function since F (·|I) = F (·). For

simplicity, consider two levels of competition with I2 > I1 leading to the bid distributions

G2(·) and G1(·).

Proposition 4: Under exogeneity of the number of bidders, λ−1(·) is identified on the range

of the function [1/(I1 − 1)][G1(b)/g1(b)].

Because vα does not vary with I, (2) leads to the compatibility condition λ−1[[1/(I1 −

1)][α/g1(b1α)]] = λ−1[[1/(I2 − 1)][α/g2(b2α)]] + ∆bα, where ∆bα = b2α − b1α. By continuity of

the function [1/(I1 − 1)][·/g1(b1·)], there exists a value α̃ such that [1/(I1 − 1)][α̃/g1(b1α̃)] =

[1/(I2 − 1)][α/g2(b2α)], which can be used to rewrite the previous compatibility condition as

λ−1[[1/(I1 − 1)][α/g1(b1α)]] = λ−1[[1/(I2 − 1)][α̃/g2(b2α̃)]] +∆bα̃ +∆bα. Continuing the same
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exercise gives a sequence of values for α, namely {αt} such that

λ−1(u) =
+∞∑

t=0

∆bαt , (3)

with u = [1/(I1 − 1)][α0/g1(b1α0)] and α0 arbitraty in [0, 1]. This corresponds to a monetary

gain of vα0 − b1α0. As α0 is arbitrary, λ−1(·) is identified on the range of the function

[1/(I1 − 1)][G1(b)/g1(b)]. It is easy to show that once λ−1(·) is identified, F (·) is identified.

Proposition 4 extends to a binding reserve price, affiliated private values and asymmetric

bidders. It is worthnoting that asymmetry in both private values and preferences can be

entertained for bidders participating to both auctions. This result can be also extended to

endogenous bidders’ participation provided instruments are available. In particular, one can

model bidders’ participation as I = I(Z,W) + ε, where ε is an additive error term. The

variable W plays the role of an instrument as F (v|Z,W, ε) = F (v|Z, ε), which corresponds

to an exclusion restriction. Under such a restriction, the bidders’ utility function is identified

nonparametrically. Estimating λ−1(·), however, is difficult because of the infinite series of

differences (3) in quantiles as the estimated bαt are serially correlated.

IV. Identification of Risk Aversion Using Additional Data

Another identification strategy exploits additional bidding data. Specifically, data from

two auction designs can be used to identify the bidders’ utility function. A striking feature

of risk aversion is that it does not affect bidding in an ascending auction as bidding his

private value remains a dominant strategy. Thus, ascending auction data can be exploited

to identify the underlying distribution of private values. In particular, the observed winning

bids in ascending auctions can be interpreted as the second-highest private values. Using

distribution of order statistics, it becomes straightforward to recover the distribution F (·)

as shown by Athey and Philip Haile (2002). Once the latter is identified, (2) can be used to

recover the bidders’ utility function on [0, maxα vα − bα] using the quantiles of F (·) and G(·)

from first-price sealed-bid auction data.

Proposition 5: Any structure [U, F ] is identified when bidding data from ascending and

first-price sealed-bid auctions are combined.
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The result extends to a binding reserve price and asymmetric bidders. On the other hand,

when private values are affiliated, the observation of the winning bid is not sufficient to

recover the distribution of private values as the affiliation among private values cannot be

captured by a single bid. Using two auction designs, however, is valid if the same set of

bidders participate to both auctions. Otherwise, we may face two different underlying private

value distributions. This crucial assumption needs to be checked in the data. The resulting

estimation procedure combines order statistics, nonparametric estimators for distribution

and density as well as quantiles.

This paper offers a review of the identification problem of risk aversion in auction models.

Various restrictions such as partial parameterization of the structure, exclusion restrictions

and the use of additional data are used to achieve identification of the bidders’ utility func-

tion. The results extend to more general models including a binding reserve price, affiliated

private values and asymmetric bidders. The above methods have been applied to timber auc-

tion data, where significant risk aversion has been found. Uncertainty may affect bidders’

private values such as in a model with stochastic private values, in which a random shock

realized ex post changes the winner’s private value. Such an uncertainty affects bidding

behavior under risk aversion. Given the expost uncertainties faced by bidders in construc-

tion procurements, extension of the current results to stochastic private values may have

interesting economic applications.
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